How to critique a paper

Alex Liddle
BTU teaching 22nd February 2018

- Discussion rather than a teaching session
- Personal preference rather than a right way
Structure

- Why read papers?
- What do you want to get out of it?
- What questions do you need to ask?
Why read papers?

- To guide practice
- For research
- To have something to talk about with the boss
- To have something to say to the patients
 - Prognosis, revision rate etc
- For exams
- For interviews

What do we need to know?

- What question have they asked?
- What have they concluded?
- Can we believe it?
How I read a paper

- Quick read through
 - Is this interesting?
 - Is there anything obviously fishy about it?
 - Have they done anything weird?

- Systematic read through
 1. Study question (end of introduction)
 2. Methods and stats
 3. Results
 4. Conclusions

Questions to ask a paper

- What question are they asking?

- What is the study design?

- What population are they using?

- How are they analysing their results?

- What are they concluding?
What question are they asking?

- Do they actually ask a research question?
The purpose of this study was to determine the effects of patellar resurfacing on the clinical, radiographic, and functional outcomes of patients who underwent distal femoral resection for a femoral tumor and megaprosthesis reconstruction.
The purpose of this study was to determine the effects of patellar resurfacing on the clinical, radiographic, and functional outcomes of patients who underwent distal femoral resection for a femoral tumor and megaprosthesis reconstruction.

PICO

- **Participants**
- **Intervention**
- **Comparator**
- **Outcome**
PICO

- **Participants**
- **Intervention**
- **Comparator**
- **Outcome**

The purpose of this study was to determine the effects of patellar resurfacing on the clinical, radiographic, and functional outcomes of patients who underwent distal femoral resection for a femoral tumor and megaprosthesis reconstruction.

What question are they asking?

- Do they actually ask a research question?

- Is the question interesting?
 - Am I interested in the question?
 - Is *anybody* interested in the question?

- Do they have a hope of answering it?
Questions to ask a paper

- What question are they asking?
- What is the study design?
- What population are they using?
- How are they analysing their results?
- What are they concluding?

Study design

- What is the study design?
 - Is it appropriate for the question at hand?
<table>
<thead>
<tr>
<th>Type of question</th>
<th>Example question</th>
<th>Study type that will best answer the question*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>In [dogs with osteoarthritis], does [supplementation with glucosamine and chondroitin] compared to [no supplementation] [reduce lameness]?</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>Prognosis and Incidence</td>
<td>In [flat-coated retrievers with cutaneous lymphoma], does [being a male] compared with [being a female] affect [average life expectancy]?</td>
<td>Cohort study</td>
</tr>
<tr>
<td>Aetiology and Risk</td>
<td>In [ferrets], is [general anaesthesia by triple injectable agent] compared with [general anaesthesia by induction and inhalational agent] associated with [an increased risk of death]?</td>
<td>Cohort study, Case-control study, Cross- sectional study</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>In [lactating dairy cattle] does [milk ELISA] compared with [serum ELISA] have [a better sensitivity and specificity for diagnosing fascioliasis]?</td>
<td>Diagnostic test validation study</td>
</tr>
<tr>
<td>Prevalence</td>
<td>In [adult racehorses] what is the [prevalence of laryngeal neuropathy] in winter?</td>
<td>Cross-sectional study</td>
</tr>
</tbody>
</table>

Bhandari JBJS 2002
When are RCTs unsuitable

- If they’re unfeasible
 - Rare conditions
 - Rare outcomes (revision, infection)
 - Heterogeneity

- If they’re unethical
 - Preoperative antibiotics
 - Fasciotomy in compartment syndrome

- If they’re not credible
 - Trauma RCTs?

Study design

- What is the study design?
 - Is it appropriate for the question at hand?

- Why have they chosen that type of study design?
 - It’s the best design to answer the question
 - It’s the only one they have the logistics to do

- Is that study design appropriate to answer the question?
Questions to ask a paper

- What question are they asking?
- What is the study design?
- What population are they using?
- How are they analysing their results?
- What are they concluding?
What population are they using?
- Will it answer the question?
- Does it have external validity?
- Are there enough people to answer the question?
 - Have they done a power calculation?

Power / sample size calculations
- *A Priori > Post hoc*

- Will you have reasonable confidence that you can spot a clinically significant difference with the numbers involved?

- Alpha and Beta?
 - $\alpha = p$ value = type I error = <0.05 (1 in 20)
 - how likely am I to get a false positive?
 - β = power = type II error (actually 1-type II error) = 80% (1 in 5)
 - How likely am I to get a false negative?
Power / sample size calculations

- Ingredients:
 - Clinically significant difference
 - Acceptable alpha
 - Acceptable beta

- Clinically significant difference
 - Minimal detectable change (MDC)
 - Minimal clinically important difference (MCID)

How do they analyse their results?
How do they analyse their results?

- Statistical analysis appropriate for study design

<table>
<thead>
<tr>
<th>Randomised trials</th>
<th>Observational studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups are born the same through randomisation</td>
<td>Groups are different and must be adjusted for in the analysis</td>
</tr>
<tr>
<td>Measured and unmeasured confounding accounted for</td>
<td>Only measured confounding accounted for</td>
</tr>
<tr>
<td>Simple statistics</td>
<td>Regression</td>
</tr>
</tbody>
</table>
How do they analyse their results?

- Statistical analysis appropriate for study design
- All reasonable assumptions met or dealt with
- If non-randomised, all appropriate confounders adjusted for

- Multivariate linear regression models were used to assess the relationships between covariates that could potentially influence anterior knee pain, range of motion, extensor lag, and complication rate.
- Logistic regression models were used for multivariate analysis to include important and significant covariates (Table I).
- The significance level was set at 0.05
What do they conclude

- Is it in any way related to their study findings?
- Have they mentioned their limitations?
- Have they given you all the data?
 - If not, why not?

TABLE II Demographic and Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Nonresurfacing (N = 60, 50%)</th>
<th>Resurfacing (N = 48, 44%)</th>
<th>Total (N = 108)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD, yr)</td>
<td>28.3 (17.4)</td>
<td>40.9 (18.8)</td>
<td>33.9 (19.3) (range, 12-75)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Sex (no.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>30 (50%)</td>
<td>24 (50%)</td>
<td>54 (50%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>30 (50%)</td>
<td>24 (50%)</td>
<td>54 (50%)</td>
<td></td>
</tr>
<tr>
<td>Diagnosis (no.)</td>
<td></td>
<td></td>
<td></td>
<td>0.85*</td>
</tr>
<tr>
<td>Benign</td>
<td>5 (8%)</td>
<td>6 (13%)</td>
<td>11 (10%)</td>
<td></td>
</tr>
<tr>
<td>Primary malignant</td>
<td>47 (78%)</td>
<td>34 (71%)</td>
<td>81 (75%)</td>
<td></td>
</tr>
<tr>
<td>Metastasis or myeloma</td>
<td>8 (13%)</td>
<td>7 (15%)</td>
<td>15 (14%)</td>
<td></td>
</tr>
<tr>
<td>Post-radiation fracture</td>
<td>0</td>
<td>1 (2%)</td>
<td>1 (1%)</td>
<td></td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Mean (kg/m²)</td>
<td>26.4</td>
<td>27.9</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td><25 kg/m² (no.)</td>
<td>26 (44%)</td>
<td>10 (29%)</td>
<td>36 (40%)</td>
<td></td>
</tr>
<tr>
<td>≥25 kg/m² (no.)</td>
<td>30 (54%)</td>
<td>24 (71%)</td>
<td>54 (60%)</td>
<td></td>
</tr>
<tr>
<td>Mean amount of femoral resection (%)</td>
<td>41%</td>
<td>37%</td>
<td>39%</td>
<td>0.33</td>
</tr>
<tr>
<td>Type of endoprosthesi (no.)</td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>GMRS</td>
<td>44 (73%)</td>
<td>11 (23%)</td>
<td>55 (51%)</td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>18 (27%)</td>
<td>37 (77%)</td>
<td>53 (49%)</td>
<td></td>
</tr>
<tr>
<td>Surgical approach (no.)</td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Medial</td>
<td>39 (65%)</td>
<td>8 (17%)</td>
<td>47 (44%)</td>
<td></td>
</tr>
<tr>
<td>Lateral</td>
<td>21 (35%)</td>
<td>40 (83%)</td>
<td>61 (56%)</td>
<td></td>
</tr>
<tr>
<td>Mean followup time (SD, yr)</td>
<td>3.8 (3.0)</td>
<td>5.37 (4.8)</td>
<td>4.5 (3.97)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

*For the difference in the number of patients who presented with metastasis or myeloma versus another diagnosis (benign, malignant primary, or post-radiation fracture), the body mass index is reported for thirty patients Fifty-six in the nonresurfacing group and thirty-four in the resurfacing group.
Questions